Weighted Likelihood for Semiparametric Models and Two-phase Stratified Samples, with Application to Cox Regression

نویسندگان

  • Norman E. Breslow
  • Jon A. Wellner
چکیده

Weighted likelihood, in which one solves Horvitz-Thompson or inverse probability weighted (IPW) versions of the likelihood equations, offers a simple and robust method for fitting models to two phase stratified samples. We consider semiparametric models for which solution of infinite dimensional estimating equations leads to √ N consistent and asymptotically Gaussian estimators of both Euclidean and nonparametric parameters. If the phase two sample is selected via Bernoulli (i.i.d.) sampling with known sampling probabilities, standard estimating equation theory shows that the influence function for the weighted likelihood estimator of the Euclidean parameter is the IPW version of the ordinary influence function. By proving weak convergence of the IPW empirical process, and borrowing results on weighted bootstrap empirical processes, we derive a parallel asymptotic expansion for finite population stratified sampling. Whereas the asymptotic variance for Bernoulli sampling involves the within strata second moments of the influence function, for finite population stratified sampling it involves only the within strata variances. The latter asymptotic variance also arises when the observed sampling fractions are used as estimates of those known a priori. A general procedure is proposed for fitting semiparametric models with estimated weights to two phase data. Several of our key results have already been derived for the special case of Cox regression with stratified case-cohort studies, other complex survey designs and missing data problems more generally. This paper is intended to help place this previous work in appropriate context and to pave the way for applications to other models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Z-theorem with Estimated Nuisance Parameters and Correction Note for 'Weighted Likelihood for Semiparametric Models and Two-phase Stratified Samples, with Application to Cox Regression'

We state and prove a limit theorem for estimators of a general, possibly infinite dimensional parameter based on unbiased estimating equations containing estimated nuisance parameters. The theorem corrects a gap in the proof of one of the assertions of our paper 'Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression'.

متن کامل

Methods for Stratified Cluster Sampling with Informative Stratification

We look at fitting regression models using data from stratified cluster samples when the strata may depend in some way on the observed responses within clusters. One important subclass of examples is that of family studies in genetic epidemiology, where the probability of selecting a family into the study depends on the incidence of disease within the family. We develop the survey-weighted esti...

متن کامل

Research Article Methods for Stratified Cluster Sampling with Informative Stratification

We look at fitting regression models using data from stratified cluster samples when the strata may depend in some way on the observed responses within clusters. One important subclass of examples is that of family studies in genetic epidemiology, where the probability of selecting a family into the study depends on the incidence of disease within the family. We develop the survey-weighted esti...

متن کامل

Weighted Empirical Likelihood in Some Two-sample Semiparametric Models with Various Types of Censored Data

In this article, the weighted empirical likelihood is applied to a general setting of two-sample semiparametric models, which includes biased sampling models and case-control logistic regression models as special cases. For various types of censored data, such as right censored data, doubly censored data, interval censored data and partly interval-censored data, the weighted empirical likelihoo...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005